Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 229
Filter
1.
Proc Natl Acad Sci U S A ; 120(23): e2303509120, 2023 06 06.
Article in English | MEDLINE | ID: covidwho-20243539

ABSTRACT

Vectored immunoprophylaxis was first developed as a means of establishing engineered immunity to HIV using an adenoassociated viral vector expressing a broadly neutralizing antibody. We applied this concept to establish long-term prophylaxis against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a mouse model using adenoassociated virus and lentiviral vectors expressing a high-affinity angiotensin-converting enzyme 2 (ACE2) decoy. Administration of decoy-expressing (adenoassociated virus) AAV2.retro and AAV6.2 vectors by intranasal instillation or intramuscular injection protected mice against high-titered SARS-CoV-2 infection. AAV and lentiviral vectored immunoprophylaxis was durable and was active against SARS-CoV-2 Omicron subvariants. The AAV vectors were also effective therapeutically when administered postinfection. Vectored immunoprophylaxis could be of value for immunocompromised individuals for whom vaccination is not practical and as a means to rapidly establish protection from infection. Unlike monoclonal antibody therapy, the approach is expected to remain active despite continued evolution viral variants.


Subject(s)
COVID-19 , Animals , Mice , COVID-19/prevention & control , SARS-CoV-2/genetics , Immunization , Immunotherapy , Vaccination , Dependovirus/genetics , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use
3.
Viruses ; 15(5)2023 04 25.
Article in English | MEDLINE | ID: covidwho-20235598

ABSTRACT

Drug appropriateness is a pillar of modern evidence-based medicine, but the turnaround times of genomic sequencing are not compatible with the urgent need to deliver treatments against microorganisms. Massive worldwide genomic surveillance has created an unprecedented landscape for exploiting viral sequencing for therapeutic purposes. When it comes to therapeutic antiviral antibodies, using IC50 against specific polymorphisms of the target antigen can be calculated in vitro, and a list of mutations leading to drug resistance (immune escape) can be compiled. The author encountered this type of knowledge (available from the Stanford University Coronavirus Antiviral Resistance Database,) in a publicly accessible repository of SARS-CoV-2 sequences. The author used a custom function of the CoV-Spectrum.org web portal to deliver up-to-date, regional prevalence estimates of baseline efficacy for each authorized anti-spike mAb across all co-circulating SARS-CoV-2 sublineages at a given time point. This publicly accessible tool can inform therapeutic choices that would otherwise be blind.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Genomics , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/therapeutic use , Antiviral Agents , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing
4.
Front Immunol ; 14: 1162342, 2023.
Article in English | MEDLINE | ID: covidwho-20235328

ABSTRACT

Monoclonal antibodies (mABs) are safe and effective proteins produced in laboratory that may be used to target a single epitope of a highly conserved protein of a virus or a bacterial pathogen. For this purpose, the epitope is selected among those that play the major role as targets for prevention of infection or tissue damage. In this paper, characteristics of the most important mABs that have been licensed and used or are in advanced stages of development for use in prophylaxis and therapy of infectious diseases are discussed. We showed that a great number of mABs effective against virus or bacterial infections have been developed, although only in a small number of cases these are licensed for use in clinical practice and have reached the market. Although some examples of therapeutic efficacy have been shown, not unlike more traditional antiviral or antibacterial treatments, their efficacy is significantly greater in prophylaxis or early post-exposure treatment. Although in many cases the use of vaccines is more effective and cost-effective than that of mABs, for many infectious diseases no vaccines have yet been developed and licensed. Furthermore, in emergency situations, like in epidemics or pandemics, the availability of mABs can be an attractive adjunct to our armament to reduce the impact. Finally, the availability of mABs against bacteria can be an important alternative, when multidrug-resistant strains are involved.


Subject(s)
Bacterial Infections , COVID-19 , Communicable Diseases , Rabies Vaccines , Rabies , Respiratory Syncytial Virus, Human , Humans , Antibodies, Monoclonal/therapeutic use , SARS-CoV-2 , HIV , Antibodies, Viral/therapeutic use , Epitopes , Bacterial Infections/drug therapy , Communicable Diseases/drug therapy
5.
Front Cell Infect Microbiol ; 13: 1155293, 2023.
Article in English | MEDLINE | ID: covidwho-2327276

ABSTRACT

Introduction: The constantly mutating SARS-CoV-2 has been infected an increasing number of people, hence the safe and efficacious treatment are urgently needed to combat the COVID-19 pandemic. Currently, neutralizing antibodies (Nabs), targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein are potentially effective therapeutics against COVID-19. As a new form of antibody, bispecific single chain antibodies (BscAbs) can be easily expressed in E. coli and exhibits broad-spectrum antiviral activity. Methods: In this study, we constructed two BscAbs 16-29, 16-3022 and three single chain variable fragments (scFv) S1-16, S2-29 and S3022 as a comparison to explore their antiviral activity against SARS-CoV-2. The affinity of the five antibodies was characterized by ELISA and SPR and the neutralizing activity of them was analyzed using pseudovirus or authentic virus neutralization assay. Bioinformatics and competitive ELISA methods were used to identify different epitopes on RBD. Results: Our results revealed the potent neutralizing activity of two BscAbs 16-29 and 16-3022 against SARS-CoV-2 original strain and Omicron variant infection. In addition, we also found that SARS-CoV RBD-targeted scFv S3022 could play a synergistic role with other SARS-CoV-2 RBD-targeted antibodies to enhance neutralizing activity in the form of a BscAb or in cocktail therapies. Discussion: This innovative approach offers a promising avenue for the development of subsequent antibody therapies against SARSCoV-2. Combining the advantages of cocktails and single-molecule strategies, BscAb therapy has the potential to be developed as an effective immunotherapeutic for clinical use to mitigate the ongoing pandemic.


Subject(s)
COVID-19 , Single-Chain Antibodies , Humans , SARS-CoV-2/genetics , Escherichia coli , Pandemics , Antibodies, Monoclonal , Antibodies, Neutralizing , Single-Chain Antibodies/genetics , Antibodies, Viral/therapeutic use , Antiviral Agents
6.
PLoS One ; 18(5): e0284173, 2023.
Article in English | MEDLINE | ID: covidwho-2313148

ABSTRACT

The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently the biggest healthcare issue worldwide. This study aimed to develop a monoclonal antibody against SARS-CoV-2 from B cells of recovered COVID-19 patients, which might have beneficial therapeutic purposes for COVID-19 patients. We successfully generated human monoclonal antibodies (hmAbs) against the receptor binding domain (RBD) protein of SARS-CoV-2 using developed hybridoma technology. The isolated hmAbs against the RBD protein (wild-type) showed high binding activity and neutralized the interaction between the RBD and the cellular receptor angiotensin-converting enzyme 2 (ACE2) protein. Epitope binning and crystallography results displayed target epitopes of these antibodies in distinct regions beneficial in the mix as a cocktail. The 3D2 binds to conserved epitopes among multi-variants. Pseudovirion-based neutralization results revealed that the antibody cocktail, 1D1 and 3D2, showed high potency in multiple variants of SARS-CoV-2 infection. In vivo studies showed the ability of the antibody cocktail treatment (intraperitoneal (i.p.) administration) to reduce viral load (Beta variant) in blood and various tissues. While the antibody cocktail treatment (intranasal (i.n.) administration) could not significantly reduce the viral load in nasal turbinate and lung tissue, it could reduce the viral load in blood, kidney, and brain tissue. These findings revealed that the efficacy of the antibody cocktail, 1D1 and 3D2, should be further studied in animal models in terms of timing of administration, optimal dose, and efficacy to mitigate inflammation in targeted tissue such as nasal turbinate and lung.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Antibodies, Neutralizing , Antibodies, Viral/therapeutic use , Antibodies, Monoclonal , Epitopes , Spike Glycoprotein, Coronavirus
8.
Lancet Infect Dis ; 22(11): e311-e326, 2022 11.
Article in English | MEDLINE | ID: covidwho-2308470

ABSTRACT

Monoclonal antibodies (mAbs) targeting the spike protein of SARS-CoV-2 have been widely used in the ongoing COVID-19 pandemic. In this paper, we review the properties of mAbs and their effect as therapeutics in the pandemic, including structural classification, outcomes in clinical trials that led to the authorisation of mAbs, and baseline and treatment-emergent immune escape. We show how the omicron (B.1.1.529) variant of concern has reset treatment strategies so far, discuss future developments that could lead to improved outcomes, and report the intrinsic limitations of using mAbs as therapeutic agents.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Spike Glycoprotein, Coronavirus , Pandemics , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/therapeutic use , Antibodies, Neutralizing
9.
Cell Rep ; 42(5): 112421, 2023 05 30.
Article in English | MEDLINE | ID: covidwho-2296271

ABSTRACT

Therapeutic antibodies are an important tool in the arsenal against coronavirus infection. However, most antibodies developed early in the pandemic have lost most or all efficacy against newly emergent strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), particularly those of the Omicron lineage. Here, we report the identification of a panel of vaccinee-derived antibodies that have broad-spectrum neutralization activity. Structural and biochemical characterization of the three broadest-spectrum antibodies reveal complementary footprints and differing requirements for avidity to overcome variant-associated mutations in their binding footprints. In the K18 mouse model of infection, these three antibodies exhibit protective efficacy against BA.1 and BA.2 infection. This study highlights the resilience and vulnerabilities of SARS-CoV-2 antibodies and provides road maps for further development of broad-spectrum therapeutics.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Animals , Mice , SARS-CoV-2 , Antibodies, Viral/therapeutic use , Broadly Neutralizing Antibodies
10.
J Med Virol ; 95(4): e28742, 2023 04.
Article in English | MEDLINE | ID: covidwho-2293264

ABSTRACT

From January to March 2022, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta (B.1.617.2) infection was prevalent in Yuzhou and Zhengzhou. DXP-604 is a broad-spectrum antiviral monoclonal antibody, which has excellent viral neutralization ability in vitro and a long half-life in vivo, with good biosafety and tolerability. Preliminary results showed that DXP-604 can accelerate recovery from Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 Delta variant in hospitalized patients with mild to moderate clinical symptoms. However, the efficacy of DXP-604 has not been fully studied in high-risk severe patients. Here, we prospectively enrolled 27 high-risk patients, two groups were divided, in addition to receiving standard of care (SOC), 14 of them additionally received the neutralizing antibody DXP-604 therapy, and another 13 intensive care unit (ICU) patients simultaneously underwent SOC as a control group matched for age, gender, and clinical type. The results revealed lower C-reactive protein, interleukin-6, lactic dehydrogenase and neutrophil counts, and higher lymphocyte and monocyte counts from Day 3 post-DXP-604 treatment compared with SOC treatment. Besides, thoracic CT images showed improvements in lesion areas and degrees, along with changes in blood inflammatory factors. Moreover, DXP-604 reduced the invasive mechanical ventilation and mortality of high-risk SARS-CoV-2 infected patients. The ongoing clinical trials of DXP-604 neutralizing antibody will clarify its utility as a new attractive countermeasure for high-risk COVID-19.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use
11.
J Med Virol ; 95(3): e28657, 2023 03.
Article in English | MEDLINE | ID: covidwho-2265364

ABSTRACT

Novel immune escape variants have emerged as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread worldwide. Many of the variants cause breakthrough infections in vaccinated populations, posing great challenges to current antiviral strategies targeting the immunodominance of the receptor-binding domain within the spike protein. Here, we found that a novel broadly neutralizing monoclonal antibody (mAb), G5, provided efficient protection against SARS-CoV-2 variants of concern (VOCs) in vitro and in vivo. A single dose of mAb G5 could significantly inhibit the viral burden in mice challenged with the mouse-adapted SARS-CoV-2 or SARS-CoV-2 Omicron BA.1 variant, as well as the body weight loss and cytokine release induced by mouse-adapted SARS-CoV-2. The refined epitope recognized by mAb G5 was identified as 1148 FKEELDKYF1156 in the stem helix of subunit S2. In addition, a human-mouse chimeric mAb was generated based on the variable region of heavy chain and VL genes of mAb G5. Our study provides a broad antibody drug candidate against SARS-CoV-2 VOCs and reveals a novel target for developing pan-SARS-CoV-2 vaccines.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Humans , Animals , Mice , Antibodies, Monoclonal/therapeutic use , COVID-19 Vaccines , SARS-CoV-2/genetics , Immunosuppressive Agents , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing , Antibodies, Viral/therapeutic use
12.
Viruses ; 15(3)2023 02 23.
Article in English | MEDLINE | ID: covidwho-2255942

ABSTRACT

We present the case of a 76-year-old male patient persistently infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the setting of a stage IIIC cutaneous melanoma and non-Hodgkin's lymphoma (NHL). Due to the persistent coronavirus disease 19 (COVID-19), all cancer treatments were discontinued. Because of the worsening of his clinical state and the persistence of SARS-CoV-2 positivity for more than six months, the patient was treated with sotrovimab, which was ineffective due to resistance mutations acquired during that time. In order to resume cancer treatment and make the patient free from SARS-CoV-2, an in vitro screening of Evusheld monoclonal antibodies (tixagevumab-cilgavimab) against the viral strains isolated from the subject was performed. The promising results obtained during in vitro testing led to the authorization of the off-label use of Evusheld, which made the patient negative for SARS-CoV-2, thus, allowing him to resume his cancer treatment. This study highlights the Evusheld monoclonal antibodies' efficacy, not only in prevention but also in successful therapy against prolonged COVID-19. Therefore, testing neutralizing monoclonal antibodies in vitro against SARS-CoV-2 mutants directly isolated from patients could provide useful information for the treatment of people affected by long COVID.


Subject(s)
COVID-19 , Melanoma , Skin Neoplasms , Humans , Male , Aged , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use
13.
Rev Med Virol ; 33(4): e2439, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2272164

ABSTRACT

Until now, the treatment protocols for COVID-19 have been revised multiple times. The use and approval of therapeutic monoclonal antibodies (mAbs) for COVID-19 treatment represent exceptional achievements in modern science, technology and medicine. SARS-CoV-2 Omicron evasion of pre-existing immunity represents a serious public health problem nowadays. This systematic review with meta-analysis provided comprehensive and up-to-date evidence of the clinical efficacy of therapeutic anti-SARS-CoV-2 mAbs against Omicron subvariants in COVID-19 patients and included 10 articles. The prevalence of hospitalisation among Omicron-positive patients treated with anti-SARS-CoV-2 mAbs was 2.8% (89/3169) while it controls (Omicron-positive patients treated with other therapies) 11% (154/1371). There was a statistically significantly different number of hospitalisations between the two studied groups in favour of the anti-SARS-CoV-2 mAbs treated group. (OR = 0.56, 95% CI OR = 0.41-0.77, p < 0.001, respectively). Eight deaths (0.30%) out of 2619 Omicron-positive patients occurred in the anti-SARS-CoV-2 mAbs treated group, while in the control group (Omicron-positive patients treated with other therapies), 27 patients died out of 1401 (1.93%). There was a significantly different number of deaths between the two studied groups in favour of Omicron-positive patients treated with anti-SARS-CoV-2 mAbs (OR = 0.38, 95% CI OR = 0.17-0.85, p = 0.020). Using sotrovimab in treating Omicron-positive patients indicated a reduction of hospitalisation and mortality for 49% and 89% in favour of sotrovimab, respectively (OR = 0.51, 95% CI OR = 0.34-0.79, p = 0.002; OR = 0.11, 95% CI OR = 0.03-0.39, p = 0.001). We could only provide evidence of the positive impact in reducing hospitalisation and mortality rates when anti-SARS-CoV-2 mAbs were used to treat patients infected with Omicron variants BA.1 or BA.2 and not on other Omicron variants.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Humans , SARS-CoV-2 , Treatment Outcome , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing , Antibodies, Viral/therapeutic use , Hospitalization
15.
Rev Esp Quimioter ; 35 Suppl 3: 16-19, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2251897

ABSTRACT

The COVID-19 pandemic has boosted significant research in developing monoclonal antibodies (mAbs) to treat and prevent SARS-CoV-2 infection. Clinical trials have shown that mAbs are safe and effective in preventing hospitalization and death in patients with mild to moderate COVID-19 risk factors for progression. mAbs have also been effective for treating severe disease in seronegative patients and preventing COVID-19. So far, studies have been carried out in a largely unvaccinated population at a time when the omicron variant was not described. Future research should address these limitations and provide information on specific population groups, including immunosuppressed and previously infected individuals.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , Antibodies, Neutralizing/therapeutic use , Neutralization Tests , SARS-CoV-2 , Antibodies, Viral/therapeutic use , Pandemics , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins , Membrane Glycoproteins , Antibodies, Monoclonal/therapeutic use
16.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: covidwho-2246813

ABSTRACT

The worldwide spread of COVID-19 continues to impact our lives and has led to unprecedented damage to global health and the economy. This highlights the need for an efficient approach to rapidly develop therapeutics and prophylactics against SARS-CoV-2. We modified a single-domain antibody, SARS-CoV-2 VHH, to the surface of the liposomes. These immunoliposomes demonstrated a good neutralizing ability, but could also carry therapeutic compounds. Furthermore, we used the 2019-nCoV RBD-SD1 protein as an antigen with Lip/cGAMP as the adjuvant to immunize mice. Lip/cGAMP enhanced the immunity well. It was demonstrated that the combination of RBD-SD1 and Lip/cGAMP was an effective preventive vaccine. This work presented potent therapeutic anti-SARS-CoV-2 drugs and an effective vaccine to prevent the spread of COVID-19.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Single-Domain Antibodies , Animals , Mice , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/therapeutic use , COVID-19/therapy , Liposomes/immunology , SARS-CoV-2/immunology , Single-Domain Antibodies/therapeutic use
17.
Clin Infect Dis ; 76(11): 2018-2024, 2023 Jun 08.
Article in English | MEDLINE | ID: covidwho-2228195

ABSTRACT

Coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) is a safe and effective treatment for COVID-19 in immunocompromised (IC) patients. IC patients have a higher risk of persistent infection, severe disease, and death from COVID-19. Despite the continued clinical use of CCP to treat IC patients, the optimal dose, frequency/schedule, and duration of CCP treatment has yet to be determined, and related best practices guidelines are lacking. A group of individuals with expertise spanning infectious diseases, virology and transfusion medicine was assembled to render an expert opinion statement pertaining to the use of CCP for IC patients. For optimal effect, CCP should be recently and locally collected to match circulating variant. CCP should be considered for the treatment of IC patients with acute and protracted COVID-19; dosage depends on clinical setting (acute vs protracted COVID-19). CCP containing high-titer severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies, retains activity against circulating SARS-CoV-2 variants, which have otherwise rendered monoclonal antibodies ineffective.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , SARS-CoV-2 , COVID-19 Serotherapy , Immunocompromised Host , Immunization, Passive , Antibodies, Viral/therapeutic use
18.
Int J Mol Sci ; 23(17)2022 Aug 28.
Article in English | MEDLINE | ID: covidwho-2227368

ABSTRACT

Since the first COVID-19 reports back in December of 2019, this viral infection caused by SARS-CoV-2 has claimed millions of lives. To control the COVID-19 pandemic, the Food and Drug Administration (FDA) and/or European Agency of Medicines (EMA) have granted Emergency Use Authorization (EUA) to nine therapeutic antibodies. Nonetheless, the natural evolution of SARS-CoV-2 has generated numerous variants of concern (VOCs) that have challenged the efficacy of the EUA antibodies. Here, we review the most relevant characteristics of these therapeutic antibodies, including timeline of approval, neutralization profile against the VOCs, selection methods of their variable regions, somatic mutations, HCDR3 and LCDR3 features, isotype, Fc modifications used in the therapeutic format, and epitope recognized on the receptor-binding domain (RBD) of SARS-CoV-2. One of the conclusions of the review is that the EUA therapeutic antibodies that still retain efficacy against new VOCs bind an epitope formed by conserved residues that seem to be evolutionarily conserved as thus, critical for the RBD:hACE-2 interaction. The information reviewed here should help to design new and more efficacious antibodies to prevent and/or treat COVID-19, as well as other infectious diseases.


Subject(s)
COVID-19 Drug Treatment , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Epitopes , Humans , Membrane Glycoproteins/metabolism , Neutralization Tests , Pandemics , SARS-CoV-2 , United States , Viral Envelope Proteins/genetics
19.
PLoS Pathog ; 19(1): e1011085, 2023 01.
Article in English | MEDLINE | ID: covidwho-2224483

ABSTRACT

Neutralizing antibodies (nAbs) are important assets to fight COVID-19, but most existing nAbs lose the activities against Omicron subvariants. Here, we report a human monoclonal antibody (Ab08) isolated from a convalescent patient infected with the prototype strain (Wuhan-Hu-1). Ab08 binds to the receptor-binding domain (RBD) with pico-molar affinity (230 pM), effectively neutralizes SARS-CoV-2 and variants of concern (VOCs) including Alpha, Beta, Gamma, Mu, Omicron BA.1 and BA.2, and to a lesser extent for Delta and Omicron BA.4/BA.5 which bear the L452R mutation. Of medical importance, Ab08 shows therapeutic efficacy in SARS-CoV-2-infected hACE2 mice. X-ray crystallography of the Ab08-RBD complex reveals an antibody footprint largely in the ß-strand core and away from the ACE2-binding motif. Negative staining electron-microscopy suggests a neutralizing mechanism through which Ab08 destructs the Spike trimer. Together, our work identifies a nAb with therapeutic potential for COVID-19.


Subject(s)
Antibodies, Monoclonal , COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL